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We demonstrate the feasibility of using “umbrella sampling” to do Monte Carlo Markov- 
sampling runs each covering a substantial range of density: “density-scaling Monte Carlo,” or 
DSMC. One can obtain in this way not only the usual canonical averages but also the relative 
free energy as a function of density. To test this it has been applied to systems for which there 
are some previous reliable results: the hard-sphere system and the restricted primitive model 
of 1:1 and 2:2 electrolytes. The method proves to be startlingly powerful in that very extensive 
results can be obtained with very few DSMC runs. An important further motivation is the 
prospect of using the technique to study phase transition regions. 0 1991 Academic Press, Inc. 

1. MOTIVATION 

In Monte Carlo computations in statistical mechanics, “umbrella sampling” 
implies sampling, in a single realization, the parts of configuration space relevant to 
a range of physical situations [ 11. The sampling distribution will itself be non- 
physical, in the sense that it will not correspond to the ensemble distribution func- 
tion for any one physical state. Instead it will be chosen arbitrarily to give adequate 
coverage of the relevant part of phase space for every state in the range addressed. 
The outstanding feature of such calculations is perhaps that one can then obtain the 
relative free energies of the system throughout the range of situations included. 
Unlike most other Monte Carlo free energy methods, this technique is not 
restricted to low-density systems [l, 21. (Of course one obtains at the same time 
the usual mechanical quantities such as energy and correlation functions.) 

The umbrella sampling technique has been used in a variety of ways. For exam- 
ple, a range of models can be studied by encompassing a range of parameters in a 
parametrized Hamiltonian [l-3] (“Hamiltonian-scaling Monte Carlo,” or HSMC). 
This allows determination of the free energy for one model from that of another 
(for which the free energy may already be known from prior computations or in 
some other way)---e.g., the Lennard-Jones fluid from the “soft-sphere” model [ 11. 
Another possibility is to cover a range of temperatures for a single Hamiltonian 
Cl, 2, 4, 51 (“temperature-scaling Monte Carlo,” or TSMC). In a different applica- 
tion, umbrella-sampling can be used to allow examination of physically-rare 
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configurations in a system. For example, this allows the study of potentials of mean 
force in a system [6], and does so even for very strong forces such as those of the 
activation barrier regions of infrequent processes in the system [7]. In a similar 
way the relative stability of long-lived conformational states of molecules [S], and 
even of large or polymeric molecules [9], can be studied by finding and sampling 
along a path joining the relatively stable conformations. 

A thermodynamic applicaiion of particular importance has been that of 
elucidating phase transitiorybehaviour [2,4, 51. Where a transition has a critical 
point, this can be done by mapping the free energy A as a function of temperature 
T and concentration C. Such a map can be constructed by first obtaining the 
free energy along a reference isotherm at a supercritical temperature, using 
thermodynamic integration, HSMC, grand canonical methods, or in some other 
way. TSMC can then be used to obtain the temperature dependence at several 
concentrations C, resulting in a map of A( T, C) (see Fig. 1). This map can then be 
analyzed to find the coexistence curve and the thermodynamics of the phase 
transition. Such a procedure has been carried out for several systems. An attractive 
feature is that the Monte Carlo sampling does not correspond to physical sampling 
of the model under consideration (since the sampling distribution is non-physical) 
and so the quasi-ergodic problems ordinarily encountered with conventional 
Monte Carlo computation near phase transitions may be avoided: in the 
coexistence region the samples correspond to the homogeneous system with its 
associated Van der Waal’s loop. 

Despite the success of the methods just described, they are inconvenient for some 
purposes. For example, one is really often merely seeking free energy and other 
thermodynamic and structural data on some model as a function of density at some 
single temperature, in which case temperature-scaling (TSMC) is not very helpful. 
Nor is it ideal for studies of first-order transitions, where the coexisting phases will 
be at the same temperature but have different densities. (The path between the 
phases in the scheme described earlier is by TSMC to the reference isotherm, along 
the reference isotherm to the density of the second phase and then back down to 
the coexistence temperature using TSMC once more (Fig. lka long path for 
nearby states!) Furthermore, it is not applicable to freezing, since in that case there 
is no critical point. 

It is clear that what is wanted is to do the Monte Carlo scaling in the density 
direction instead: “density-scaling Monte Carlo,” or DSMC. It is not so obvious 
that this is possible, however. In the case of temperature-scaling (TSMC) the sam- 
pling demands are not too challenging: a change of temperature will correspond 
merely to a change in the relative probabilities of configurations of different 
energies. What is required is therefore only the sampling of a suitably broadened 
range of energies. If there is any substantial density change, on the other hand, the 
very nature of the configurations is seriously affected: the question is whether an 
appropriate sampling technique can be invented. 

The rest of this paper is concerned with a successful attempt to do so. In this 
paper we consider only one-phase systems. The method is discussed in Section 2. In 
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FIG. 1. Schematic representation of study of a phase transition using temperature-scaling. After 
determining the free energy A along a reference isotherm at some temperature T, (heavy dashed line) 
by some method, TSMC is carried out at arbitrary densities (vertical dashed lines) to obtain a map of 
A(T, p). The location of coexisting phases can then be determined at each temperature and the 
coexistence curve traced out. The method developed in the present paper, DSMC, seeks instead to 
obtain the relative free energies along an isotherm directly (horizontal line of short dashes) as a function 
of density. This would provide a direct link between coexisting phases (crosses) rather than by the long 
route (hatched path) required in the previous approach. 

Sections 3 and 4 it is applied to two models and the results are compared with 
those obtained in quite different ways. The two models are the hard-sphere fluid 
over a wide range of density and the dilute primitive-model coulombic fluid. They 
are contrasting cases in that the structure of the former is determined entirely by 
the harshest of short-ranged forces, while for the latter the interesting features 
depend principally on the very long-ranged coulombic attractions and repulsions. 

2. GENERAL METHOD 

For simplicity the argument is developed for a system of N identical structureless 
particles; there is no difficulty about including internal energy modes or a mixture 
of components (see, e.g., Section 4). The intention is to find the relative free energies 
of the system over a range of density. The difference of Helmholtz free energy 
A.4 = A, -A, at two different densities pz and p1 is given, for a (large) number N 
of particles and at a temperature T, by 

AA _ -ln Q(N v,, T) 
kT- Q(N v,> T)’ 

(2.1) 

581/96/l-14 
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where p, = N/V,, p2 = N/V,. In this equation the configuration integral 
Q(N, Vk, T) is given by 

Q(N V,, T)= [ dqNexp( -/?U(q”)), 
J(Vk) 

(2.2) 

where /I = l/k,T, qN is the N-particle configuration (ql, q2, . . . . qi, . . . . qN), and U(qN) 
is the potential energy. Each position qi is integrated, as indicated, over the volume 
Vk corresponding to the density pk. 

To estimate AA using (2.1) means estimating the ratio Q( N, Vz, T)/Q(N, V, , T). 
To estimate this ratio in a Monte Carlo procedure we must evidently generate a 
sample of configurations that includes the parts of configuration space that are 
important to both the numerator and denominator of the ratio. We would like to 
do so in a way that includes simultaneously, for some V, = N/p,, regarded as a 
reference state, a substantial range of V2’s. 

This sampling problem can be made more amenable by re-writing (2.2) in terms 
of reduced position vectors ri, 

ri - QilLk, (2.3) 

where Li= V,. Then (2.2) becomes 

QW, V,c, T) = Vk” ICI) d rN exp( -jU(r”, Lk)) 3 VFQ’(N, L,, T), (2.4) 

where the final form defines a “reduced configuration integral” Q’. In (2.4), 
U(rN, Lk) is just U(qN), at the density N/L:, expressed in terms of L, and the 
reduced positions rN. In view of (2.4), (2.1) may be written 

AA Vz AA,, -+ln-=-= 
NkT V, NkT 

-aln (2.5) 

In Q’ each position ri is of course integrated over unit volume, as indicated in (2.4), 
regardless of the density. (For example, in calculations on a bulk fluid it would be 
natural to use the (periodic) unit cube.) To obtain good estimates of the Q’-ratio 
in (2.5) requires the sampling of the configurations rN to include those important 
to both the numerator and the denominator for each density of interest. 

The sampling problem can thus be reduced to that of sampling N points in a unit 
periodic volume. Each configuration of these points will contribute to Q’(N, L,, T) 
for eoery density pk = N/L:. The formal aspects of such a procedure are easy to 
develop: Suppose the configurations rN of the N points in their unit volume are 
generated in a Monte Carlo Markov-chain sampling procedure to belong to the 
sampling distribution n(P), and that we may choose a sampling distribution n(r”) 
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appropriate to the purpose we have outlined. Then (simply by inserting ratios 
identical to unity) we can evidently write 

C?‘(N JL, T) =Jcl) drN(4rNMrN)) exp( -bW”, U) x SC,) drNn(rN) 
Q’W, Ll, T)- jcl) drN(4rNYWN)) ev(-BWN, L)) St,, drNNrN) 

_ <ew(-BWN7 Lz)MrN)>, 
(exp(-BU(rNy L)MrN)), 

(2.6) 

where ( ... ), indicates an average over the distribution A(rN). 
Since the sampling distribution rr(rN) must include the region of the reduced con- 

figuration space rN relevant to the canonical distribution for each density pk of the 
range to which n is “appropriate,” canonical averages can also be obtained at all 
such densities. For example the canonical average configurational energy (U),,,..” 
can immediately be written 

wqN)),,,ca” = jcl) drNU(rN, LJ exp( -/Wr”, LA) 
ICI) drN exp( -BW”, Lk)) 

s s(I) drN(4rN)/r(rN)) UP”, L) ev(-BU(rN, L,J) x So) drNn(rN) 
SC,) drN(4rNMrN)) exp(-PJ(rN, L)) ICI, drN4rN) 

= < W”, 4) exp( -Bu(r”, U)14rN)), 
(exp( -P-M”, LJMrN) >, ’ 

(2.7) 

The data for pair correlation functions can be obtained similarly. 
Formally this is straightforward. The challenge is actually to find a sampling dis- 

tribution 7r(rN) which is “appropriate” in the sense of allowing reliable estimation 
of the Q’-ratio of (2.5) and (2.6) over a substantial range of relative density p2 - pi. 
It is clear that this sampling problem is not trivial, however, because the important 
configurations at different densities will correspond to markedly different reduced 
configurations rN. (In this regard density-scaling (DSMC) is considerably more 
challenging than temperature-scaling (TSMC).) 

To see this, imagine a typical configuration (in real space, qN) of the system, and 
consider the separation, qnn, between the pair of particles nearest to each other in 
such a configuration. This nearest-neighbour distance will be determined by the 
harsh short-ranged repulsive force between the particles, and it will vary only rather 
little with the density. But this means that the typical reduced nearest-neighbour 
separation, rnn = qn,,/Lk, will therefore be quite strongly dependent on the density, 
since L, is proportional to p; . “3 If we are to sample the reduced configurations 
appropriate to a range of densities, therefore, we must ensure that the sampled con- 
figurations exhibit an appropriate range of reduced nearest-neighbour separations 
r ““. 

This implies a general approach to finding an appropriate sampling distribution 
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rc(rN), namely to ensure that we can impose an appropriate distribution of r,,. This 
suggests the form 

n(r”) = w(r,,) p(r”), (2.7) 

with w(T,,) chosen to satisfy this condition; p(P) must ensure that, as well, an 
appropriate range of energies is sampled, and so on, and will reflect the inter- 
molecular forces under consideration. In the examples that follow, sampling 
distributions of the general form (2.7) have been successful. 

The Monte Carlo runs were carried out in the familiar way. A trial move was 
attempted at each step for one of the N points, chosen at random; the trial move 
was uniformly distributed in a cube of length 6 about the initial position. The dis- 
tribution n(r”) is ensured by accepting the move with probability min(1, rt,/zi), 
where Z~ is the probability of the new state and rci that of the initial state, as given 
by rc(rN). The “maximum step size” 6 was chosen to give a reasonable convergence 
rate. As described below, rr(rN) can be written as an expression involving one or 
two parameters. These were adjusted to give a suitable sampling distribution during 
short preliminary runs which also served to relax the system from the arbitrary 
initial configuration. 

3. THE HARD-SPHERE SYSTEM 

For the hard-sphere system density-scaling is especially simple conceptually, but 
particularly difficult computationally. In terms of our present notation the model is 
defined by 

U(rN, L,)=O, rnn > aILk 

= co, rnn < alLkT (3.1) 

where r,, is still the (reduced) separation of the pair of points nearest to each other 
in the system, g is the hard-sphere diameter, and the density pk = N/L:. It follows 
that a particular configuration rN will make an equal contribution, proportional to 
IIn( to Q’(N, Lk, T) for all densities pk small enough that r,,,, > o/L,, and zero 
for all larger densities. This makes density-scaling easy to understand for the hard- 
sphere case (and allows easy data-collection). 

Since for this model the only property of the configuration rN on which the 
contributions depend is the reduced nearest-neighbour rnn, it is natural to try a 
sampling distribution n(P) which depends solely on that separation, i.e., 

4rN) = w(r,,), (3.2) 

where w(T,,) is some function of r,,,,. The results reported in this paper were 
obtained using this simple form. The sampling was done for N points in a periodic 
unit cube. To study the densities p in some range p, < p < p2, configurations with 
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r,, < a/L, give no contribution, so one can set w(r,,) = 0 for such configurations. 
Otherwise the form of w(r,,) must be chosen to force the occurrence of the larger 
values of rnn (up to r,, > a/L,), for otherwise such values would occur only rarely: 
i.e., for hard spheres w(r,,) will be an increasing function of rnn in the range a/L, < 
rnn < a/L,. (For r,,,, > a/L, it is sufficient to set w(r,,) = w(a/L*).) 

For a chosen range p2 - pr of density a satisfactory numerical form of w(r,,) can 
easily be generated by trial and error: what is required is fairly uniform sampling 
(in ri,) over the range of interest. This was tried successfully, but it proved more 
convenient to work with an analytic form for w(r,,) involving only one or two 
parameters. Some of the results reported here were obtained using (in a/L, < rnn < 
al&) 

w(r,J a exp(af%L), (3.3) 

which can be adjusted, through a, to give a suitable uniformity of sampling over the 
density range. This provides the required strong dependence on rnn and was 
satisfactory at the lower densities. However, it does not always capture the required 
curvature adequately; this can be corrected by including a quadratic pre-exponen- 
tial factor adjusted by a second parameter b: 

(3.4) 

To cover very large ranges in a single run one might want to develop still more 

TABLE I 

Hard-Sphere DSMC Runs 

Density range w(r,n) No. Confs 

o.u.5 

0.54.6 

0.60.7 

0.74.8 

0.84.9 

a=448, b=O 1 x 10’ 

a=526, b=O 5 x lo6 
a=536, b= 150 3 x lo6 
a=530, b=320 3~10~ (a) 

a=660, b=300 3 x lo6 
a=660, b=350 3x lo6 (a) 

a=796, b=320 5x lo6 (a) 

a = 1025, b=405 5 x lo6 
a = 1028, b=405 8x lo6 (a) 

No&. In some density ranges extra runs were carried out as the 
programme was refined (e.g., to include pair data); these parallel data 
were pooled. The column “w(r,,)” gives the parameters used in the 
sampling function (3.4); “No. Confs.” is the number of MC conligura- 
tions used in the averages; (a) indicates runs in which pair correlation 
data were collected. 
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flexible sampling functions. The alternative, of covering a large range with overlap- 
ping realizations of more modest ranges, was followed here. 

Results are reported for samples of 108 particles in the moderate to dense fluid 
range 0.4 Q po3 d 0.9, covered in live equal overlapping ranges (0.4 to 0.5, 0.5 to 0.6, 
etc.). This was arbitrary; it could certainly have been covered in fewer runs without 
difficulty. The weighting of the sampling by w(T,,) is fairly dramatic: for example, 
in the DSMC run covering the range 0.8 < pa* < 0.9 the value of w(T,,) at the high- 
density and was some 4 x 1O44 greater than at the lower! Nevertheless the sampling 
proceeds smoothly enough. In some cases the results for a density range were 
pooled from shorter runs (see Table I). 

One could extract thermodynamic data at as many densities as one wished, in the 
sampled range. In the data reported here they were extracted for the set of reduced 
densities po3 separated by O.OOGi.e., at 26 densities in each DSMC run. The 
collection of data for the pair correlation functions is relatively time-consuming, so 
they were collected at fewer densities, those separated by 0.02-i.e., at six densities 
in each run. 

The procedure just described led to the Helmholtz free energy results shown in 
Fig. 2. Of course, as is clear from (2.5), DSMC runs give only relative free energies 
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FIG. 2. Reduced excess free energy of hard spheres obtained by DSMC on a system of 108 particles. 
The values have been extracted at intervals of 0.004 in pus. The four lines in the lower part show the 
deviations of the DSMC points from, top to bottom, the sixth-order virial expansion (using the known 
virial coefficients up to B,), the eighth-order virial (by fitting the two additional coefficients & and B,), 
the Pad6 approximation of Hoover and Ree, and the Carnahan-Starling approximation. Each is on the 
same scale as the main graph, but with the zeros shifted to separate them from each other and the axis. 
Only the sixth-order virial shows any systematic deviation. 
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in the density range covered. Since our five runs overlapped at pa3 = 0.5, 0.6, 0.7, 
and 0.8 to form a continuous series, they immediately give the relative free energy 
over the whole range 0.4 < po3 < 0.9. But for the special case of hard spheres it is 
possible to fix the absolute values of the excess free energy quite accurately, as 
follows: The virial coefficients for hard spheres are known [ 10, 1 l] with good 
accuracy up to the seventh, B,, and one expects this many terms to give a good 
description of the thermodynamic behaviour up to densities well within the range 
we covered. The observed excess reduced free energy relative to that at p* = 
pa3 = 0.4 was therefore fitted, for our lower densities, to the expression 

&(P3) -&x(0.4) 
NkT 

= C+ i Bjp’- ‘/(j- 1) 
j=2 

(3.5) 

by a least-squares adjustment of C, keeping the known values of the (pressure) 
virial coefficients Bj. Since the sum shown in (3.5) is the absolute value of the excess 
free energy at moderate densities, this determines A,,(0.4)/NkT= -C from our 
data. Using least squares in the range 0.4 d prr3 d 0.5 gave A,,(0.4)/NkT= 1.1305; 
the range 0.4<pa3 ~0.6 gave 1.1312; x2 per degree of freedom was 10e6 in either 
case, assuming constant probable relative error. The value must therefore be close 
to 1.131, and the values of A,,/NkT plotted in Fig. 2 are the absolute values 
obtained by adding 1.131 to our observed values relative to po3 = 0.4. 

Another, more direct, way of obtaining A,,(0.4) is simply to estimate it directly 
from the sixth-order density expansion. This gives A..(0.4)/NkT= 1.1308. It is 
gratifying that this is so close to the first estimate, which depended essentially on 
the shape of the density-dependence of the observed DSMC free energies. 

Hoover and Ree developed a Padt approximation for the excess free energy of 
hard spheres [12], based on the known virial coefficients up to B,, and it is 
believed to be very accurate. (It gives the value 1.1310 for the reduced excess free 
energy at pa3 = 0.4, by the way.) If plotted on Fig. 2a it would disappear under the 
DSMC points, so instead the discrepancy of the latter and the PadC is plotted 
below, but the deviations are scarcely visible. Indeed they are far closer than there 
is any reason to expect: the average difference of the DSMC points from the Padt 
is -0.0024, and the root-mean-square deviation of the DSMC free energy from the 
Pad& is only 3 x 10p3, i.e., of the order of 0.1% ! This speaks well for the smooth- 
ness of the DSMC results (the extraordinary agreement of those results to the Padt 
must itself be partly fortuitous, however, since for one thing the latter should really 
apply to the thermodynamic limit rather than to a finite system). 

This figure also shows the discrepancy between the DSMC results and the virial 
series using all the known coefficients (i.e., up to the sixth-order term B,p6/6): they 
diverge above pa3 = 0.7. If two further terms are added-those of B, and B,--they 
can be adjusted (by least squares) to lit the data. This gives B,/Bz = 
( - 6.57 + 0.63) x 10e3 and B,/Bi = ( + 8.73 f 0.43) x 10p3; the mean square devia- 
tion is 3 x 10p6. It is interesting that B, appears to be negative, because it has long 
been realized that there must be one or more negative virial coefficients for hard 
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spheres, in view of the existence of the fluid-solid phase transition. The above can- 
not be considered a reliable determination of these virial coefftcients, however, in 
spite of the excellent tit, because of the very large negative correlation coefficient 
( -0.997) for the two parameters. 

Another expression for the excess free energy of hard spheres, believed to be very 
accurate, was given by Carnahan and Starling [ 131 by combining some integral- 
equation-theory results. According to this 

3 4rl-3v2 A 
NkT=(l-vl)Z (3.6) 

where 9 = 7cpo3/6. This also tits the DSMC results very closely, as can be seen by 
the graph of deviations in Fig. 2; the root-mean-square deviation is again 3 x 10p3. 

Pair correlation functions were collected in the pa3 range 0.550.9 at intervals of 
0.02. Figure 3 shows, as an example, the six correlation functions in the range 
0.54.6 obtained in a single DSMC run: the gradual change of shape is obvious. 
Also shown for comparison are the results at 0.6 obtained from the low-density end 
of the DSMC run for the adjoining range 0.64.7. 

I 
0.8.0 

I I 
0.5 1.0 1.5 2.0 

(r - 4/u 

FIG. 3. Pair correlation functions for hard spheres at six densities, obtained from a single DSMC 
run. The functions at successive densities are displaced upwards by 1.0. At the highest density, the 
crosses show results from the lowest-density point of the DSMC run covering the higher range 0.647, 
to emphasize the reliability. 
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The pressure can be calculated from the pair correlation functions g(r) in the 
usual way [14], 

Pex&L- 1 =~p~3g(o), 
pkT pkT (3.7) 

where g(a) is the value of g(r) at contact, r = a; g(a) was obtained by fitting a cubic 
polynomial in (r - a) to (usually) eight values of g(r). In Fig. 4 the results are com- 
pared with the Pade pressure approximation of the Ree and Hoover [lo]. The 
agreement is reasonable, although they tend to be slightly below the Pade (which, 
in view of the free energy results, we know to be very accurate here). This probably 
means that the pair function data should have been collected on a liner grid (but 
they would then be noisier) and that a better extrapolation function was needed, 
presumably one with greater curvature near contact-but it is not known what 
function would be appropriate, so the results are always likely to be biassed by the 
choice. This difficulty of evaluating the pressure from g(r) is a general problem 
where the particles have harsh repulsive forces. 

Of course, there is in principle no need to use the pair-function route (3.5) to pex 

FIG. 4. The crosses show the reduced excess pressures (3.5) obtained by cubic extrapolations of the 
pair functions obtained by DSMC. The bars show twice the standard deviation of that tit. For com- 
parison is shown the Pad6 approximation [lo] of Ree and Hoover, which in view of the free energy 
results must be very accurate. The circles show some results due to Alder and Wainwright [22] and the 
squares results due to Wood and Jacobson [23]. 
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in the case of DSMC, since the pressure could instead be obtained from the 
observed density dependence of the free energy through 

aA,, P2aA,, 
pex= - av T.N=N ap T’ (3.8) 

This was calculated by four-point numerical differentiation [ 151 of the free-energy 
results, using a 0.012 reduced-density grid (except for two points at each extreme 
of the density, where a liner grid of 0.008 had to be used). Unlike the pressures 
based on (3.5) these will not be much biassed in the data extraction process; on the 
other hand, we must expect such results obtained by numerical differentiation to be 
very noisy. The resulting pressures are shown in Fig. 5. The average discrepancy 
between these results and the Pade is, of course, negligible: 0.008, while the 
standard deviaton is 0.08. As expected their accuracy is better than that of the 
pressures obtained from g(o), although their apparent precision is only moderate in 
view of the numerical differentiation. 

These pressure data obtained by differentiation of the free energy can again be 
fitted to an eighth-order virial expansion B , / B z  

= (- 5.6 + 4.1) x lop3 and B9/Bt = + (8.1 f 2.4) x 10e3. It is 
gratifying that these agree within their large uncertainties with the coefficients 
derived from the more accurate free energy data; however, the two sets of data are 
not really independent. 

B 9 
> 
d 

6- 

35 

FIG. 5. Reduced excess pressure obtained by numerical differentiation of the DSMC free energies, 
again compared with the Pad& result. 
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In view of the excellence of the Carnahan and Starling formula (3.6) and of the 
Pad& of Hoover and Ree, in representing the DSMC results, there seems no point 
in tabulating the data. 

4. RESTRICTED PRIMITIVE MODEL COULOMB SYSTEM 

The “primitive model” consists of charged hard spheres immersed in a continuum 
dielectric. It is a basic model for the theory of electrolytes and in plasma physics 
and is especially interesting at low densities. Although this model also has a hard 
core, it represents at low densities an opposite extreme to the hard-sphere system, 
since its behaviour is dominated by the weak and long-ranged coulomb forces. 

Now the model is defined by specifying that the energy at a density pk = N/L: 
corresponding to a configuration T N in reduced coordinates is given by 

= co, r,,ca 
Lk’ 

(4.1) 

where E is the continuum dielectric constant, -e is the electronic charge, Zi lel is 
the charge on ion i, and rii is the reduced separation of ions i and j. (This assumes 
that the hard-core diameter g is the same for all the pairs of ions-i.e., we study the 
“restricted” primitive model, RPM-but could easily be generalized.) 

Once again the configurations were sampled in a unit periodic cube. The densities 
were low enough that the choice between minimum-image and Ewald energy 
approximation is irrelevant; the former was used. The sampling distribution took 
the form 

4r”) = dr,,) exp ( 
Be’ -a rnn = > 

z,z, 
~ i<j rii 

TABLE II 

RPM DSMCRuns 

Electrolyte Density range w(r,,) No. Confs. 

1:l 0.05-0.15 a’ = -375, b’ = 3600 6x lo6 
0.13-0.23 a’= -1145, b’=7500 6x lo6 
0.21-0.31 a’ = - 1850, b’ = 12000 6 x lo6 

212 0.02-0.12 a’ = 785, b’ = 1280 1 x IO’ 
0.02-O. 12 a’ = 788, b’ = 1284 6x lo6 
0.10-0.20 a’ = 365, b’=O 8x lo6 
0.20-0.30 a’= -35, b’ = 5800 1 x IO’ 

(4.2) 

Note. The column “w(r,)” gives the parameter used in the sampling distribu- 
tion (4.2, 3). 
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The rationale for this form was as follows. At a given density pk there will, of 
course, almost always be unlike ions very close to contact; in the reduced descrip- 
tion this says that rnn will be very close to its minimum a/L,. Then (cf. (4.1) and 
(4.2)) in the limit rn,, = o/L, the energy distribution will be canonical for the density 
p,-but a contiguration with a given r,,,, will make a substantial contribution only 
to a narrow range of density, and of o/L, so the form (4.2) should ensure adequate 
energy-sampling. The reported results confirm that this is the case. 

The term w(r,,) is required to force the range of rnn corresponding to the desired 
density range. In the reported results we used the form 

w(r,,) = 0, if rnn < a/L, 

w(r,,) a (1 +b’(r,,-~)(r,.-~))exp(-a’r..), a/L, <.r,,,,<o;L,, (4’3) 

adjusting a’ and b’ to give fairly uniform sampling over the density range of interest. 
In (4.3), L, and L, correspond to the minimum and maximum densities studied, 
according to pL3 = N. For rnn > o/L2, w(r,,) was set to decay with rnn so that a suf- 
ficient but limited range of rnn was sampled (the precise form used depended on the 
sign of a’, but the results are not sensitive to it). 

We report results for lZil = 1 and with values of saT corresponding to 1:l and 
2:2 electrolytes, with a = 4.25A and 4.2A, respectively, in a solvent of dielectric con- 

O 1°1 

FIG. 6. Reduced excess free energy A,,/NkT for the 1:l RPM as a function of reduced density, 
obtained by DSMC. The two circles refer to the MSS results: at the lower concentration was used to 
fix the zero for the DSMC results: the other tests their accuracy. 
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stant 78.5 at 25°C. There is extensive previous work on these systems by conven- 
tional canonical and grand canonical Monte Carlo, with which the present DSMC 
results can be compared. (If one thinks of these systems, instead, as being 1 :l ionic 
plasmas in a vacuum, with the above ion sizes, the temperatures correspond to 
23420°K and 5855”K, respectively.) 

The 1:l system was studied by DSMC for systems of 128 particles, the 2:2 for 64; 
details of the runs are recorded in Table II. The 1:l system was studied over 0.05 < 
po3 < 0.31 (i.e., 0.54M< C < 3.35M) in three overlapping DSMC runs, the 2:2 over 
0.02 < pa3 d 0.30 (0.224M < C 6 3.36M), again in three overlapping ranges. The 
thermodynamic data was collected on a grid of densities pa3 separated by 0.005 
and consisted of relative free energies and reduced configurational energies at each 
density; the osmotic pressures and ionic activity coefficients are obtained by 
numerical differentiation of the free energy data. Pair correlation data were 
collected in some of the runs. 

The resulting thermodynamic data for the 1:l system is collected in Table III. 
The reduced excess free energy is shown in Fig. 6. In each run the relative values 
of the free energy are obtained. By using the overlapping density regions of the 
runs, these are easily combined into relative free energies over the whole range 
0.05 < pa3 d 0.31. (In doing this matching, several data points were used in the sub- 
stantial overlap regions between the runs, unlike the hard-sphere case where a 
single common density was used in each case.) However, the free energy relative to 
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FIG. 7. Reduced excess pressure obtained by numerical differentiation of the DSMC free energy (to 
be interpreted as the excess osmotic coeficient of the electrolyte). The circles were obtained by canonical 
MC techniques; their error bars are k 2 standard deviations. 
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TABLE III 

1:l DSMC Results 

PO 3 A,,/NkT V/NkT P,,/PkT log(Y) 

0.050 -0.243200 -0.466100 
0.055 -0.243808 -0.478900 
0.060 -0.243326 -0.492400 
0.065 -0.241304 -0.505000 
0.070 -0.239022 -0.514500 
0.075 -0.236078 -0.524000 
0.080 -0.232490 -0.533800 
0.085 -0.228696 -0.543000 
0.090 -0.224379 -0.549400 
0.095 -0.219183 -0.557100 
0.100 -0.213796 -0.565300 
0.105 -0.208292 -0.570900 
0.110 -0.202176 -0.577000 
0.115 -0.196222 -0.586000 
0.120 -0.189794 -0.593500 
0.125 -0.183258 -0.601200 
0.130 -0.176351 -0.606800 
0.135 -0.169124 -0.612600 
0.140 -0.161620 -0.618100 
0.145 -0.153567 -0.622700 
0.150 -0.145543 -0.629000 
0.155 -0.136773 -0.633200 
0.160 -0.128276 -0.637800 
0.165 -0.120460 -0.643000 
0.170 -0.111601 -0.649600 
0.175 -0.102716 -0.651100 
0.180 -0.093810 -0.656800 
0.185 -0.084060 -0.661600 
0.190 -0.074062 -0.667300 
0.195 -0.063632 -0.669700 
0.200 -0.053656 -0.672400 
0.205 -0.043822 -0.677900 
0.210 -0.033218 -0.683900 
0.215 -0.022552 -0.688000 
0.220 -0.012758 -0.690900 
0.225 -0.001611 -0.692900 
0.230 0.009699 -0.697400 
0.235 0.019826 -0.702900 
0.240 0.031383 -0.705700 
0.245 0.042954 -0.709900 
0.250 0.054807 -0.713700 
0.255 0.066316 -0.715000 
0.260 0.078205 -0.720400 
0.265 0.091006 -0.723300 
0.270 0.102303 -0.726000 
0.275 0.114775 -0.727500 
0.280 0.127280 -0.731000 
0.285 0.139847 -0.735200 
0.290 0.153095 -0.739500 
0.295 0.166339 -0.741900 
0.300 0.179497 -0.747300 
0.305 0.193097 -0.746600 
0.310 0.206905 -0.751600 

--- --- 
--- --- 
--- --- 
--- --- 

0.039590 -0.199500 
0.047648 -0.188500 
0.058412 -0.174100 
0.072358 -0.156400 
0.084525 -0.139900 
0.097672 -0.121600 
0.112437 -0.101400 
0.120966 -0.087400 
0.131994 -0.070200 
0.143960 -0.052300 
0.154424 -0.035400 
0.168811 -0.014500 
0.182821 0.006400 
0.200333 0.031200 
0.215775 0.054100 
0.236844 0.083200 
0.252502 0.106900 
0.256329 0.119500 
0.271637 0.143300 
0.279056 0.158500 
0.289351 0.177700 
0.318008 0.215200 
0.338533 0.244700 
0.363890 0.279800 
0.384505 0.310400 
0.392826 0.329100 
0.409506 0.355800 
0.420569 0.376700 
0.425994 0.392700 
0.455501 0.432900 
0.473541 0.460700 
0.472961 0.471300 
0.508116 0.517800 
0.524143 0.543900 
0.539799 0.571100 
0.570259 0.613200 
0.587447 0.642200 
0.615122 0.681400 
0.615488 0.693600 
0.642126 0.733100 
0.662200 0.764500 
0.666192 0.780900 
0.711771 0.839000 
0.737249 0.877000 
0.756728 0.909800 

--- --- 
--- --- 
--- --- 
--- --- 

Note. Reduced density pu3, reduced excess free energy, 
reduced configurational energy, excess osmotic coefficient, and 
the logarithm of the mean ionic activity coefficient. The last two 
quantities depend on numerical differentiation of the free energy. 
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the hard-sphere fluid was previously [16] obtained at a few concentrations using 
“multi-stage sampling” (MSS, an inefficient precursor of umbrella sampling). By 
adding to those MSS results the excess free energy of the hard-sphere fluid, we 
obtain the absolute value of the excess free energy. Doing this for the l.OM MSS 
result, using the Carnahan-Starling formula [13] to estimate the hard-sphere con- 
tribution, we can find the absolute value of the excess free energies over our density 
range. It is these values that are given in Table III and Fig. 6. Figure 6 shows the 
MSS point used for calibration (pa3 = 0.925) and also a MSS point for 1.968M 
(pa3 =0.1820) which is seen to agree perfectly with the variation shown by the 
DSMC results. 

Differentiation of the excess free energy leads to 

‘“=P-I=-ex P P aA 
pkT pkT NkT ap T 

A P logy, &J!i!z=~++ 
kT kT NkT pkT’ 

(4.4) 

(4.5) 

Under the McMillan-Mayer interpretation [17] of this model, p in (4.4) is the 
osmotic pressure, and p,,/pkT is the excess osmotic coefficient of the electrolyte. 
We described above how we could assign an absolute value to our excess free 
energies, which in turn, according to (4.5), gives us the values of the mean ionic 
activity coefficient at each density. Of course, we must expect the results to be 
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FIG. 8. Logarithm of the mean ionic activity coefficient of the 1:l RPM. The squares show grand 
canonical results (with +2 standard deviations.) 
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FIG. 9. Reduced configurational energy of the 1:l RPM obtained in the DSMC runs. The circles and 
squares show respectively canonical and grand canonical results (with error bars of k2 standard 
deviations). 

I2 

FIG. 10. Reduced excess free energy of the 2:2 RPM obtained by DSMC. The circles correspond to 
a Pad& based on a lit to grand-canonical activity coefficients. 
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TABLE IV 

2:2 DSMC Results 

A,,/NkT U/NkT p&W log (7) 

211 

0.020 -1.690000 -2.386800 --- --- 
0.025 -1.785526 -2.502500 --- --- 
0.030 -1.860345 -2.578900 --- --- 
0.035 -1.923744 -2.648700 --- --- 
0.040 -1.979032 -2.700400 -0.406184 -2.385200 
0.045 -2.027931 -2.757200 -0.408651 -2.436500 
0.050 -2.069288 -2.810800 -0.403303 -2.472500 
0.055 -2.108716 -2.865600 -0.400504 -2.509200 
0.060 -2.142992 -2.902300 -0.401049 -2.544000 
0.065 -2.175565 -2.943300 -0.394405 -2.569900 
0.070 -2.204102 -2.974200 -0.390778 -2.594800 
0.075 -2.230994 -3.011000 -0.380873 -2.611800 
0.080 -2.255450 -3.045000 -0.376414 -2.631800 
0.085 -2.278020 -3.076900 -0.372578 -2.650500 
0.090 -2.299040 -3.109500 -0.370582 -2.669600 
0.095 -2.318959 -3.143200 -0.355348 -2.674300 
0.100 -2.337874 -3.171000 -0.350358 -2.688200 
0.105 -2.353291 -3.196600 -0.341863 -2.695100 
0.110 -2.369387 -3.226400 -0.327119 -2.696500 
0.115 -2.384305 -3.250900 -0.326582 -2.710800 
0.120 -2.397791 -3.275000 -0.312472 -2.710200 
0.125 -2.410088 -3.298800 -0.299678 -2.709700 
0.130 -2.421519 -3.322000 -0.288076 -2.709500 
0.135 -2.432547 -3.343900 -0.278029 -2.710500 
0.140 -2.442462 -3.367400 -0.276602 -2.719000 
0.145 -2.451536 -3.386800 -0.262206 -2.713700 
0.150 -2.460843 -3.407500 -0.242339 -2.703100 
0.155 -2.468753 -3.430700 -0.241706 -2.710400 
0.160 -2.475294 -3.448200 -0.237019 -2.712300 
0.165 -2.482741 -3i466900 -0.215699 -2.698400 
0.170 -2.490297 -3.489300 -0.215577 -2.705800 
0.175 -2.495065 -3.507300 -0.196680 -2.691700 
0.180 -2.500332 -3.527500 -0.164383 -2.664700 
0.185 -2.505159 -3.545600 -0.169210 -2.674300 
0.190 -2.508977 -3.559000 -0.139188 -2.648100 
0.195 -2.513227 -3.576200 -0.126976 -2.640200 
0.200 -2.515142 -3.593000 -0.122146 -2.637200 
0.205 -2.518284 -3.626100 -0.087356 -2.605600 
0.210 -2.520872 -3.639900 -0.073719 -2.594500 
0.215 -2.521924 -3.648000 -0.057155 -2.579000 
0.220 -2.522202 -3.662200 -0.020002 -2.542200 
0.225 -2.523594 -3.683700 -0.018611 -2.542200 
0.230 -2.523330 -3.694300 -0.022124 -2.545400 
0.235 -2.523813 -3.707300 0.001957 -2.521800 
0.240 -2.523901 -3.722700 0.002647 -2.521200 
0.245 -2.523473 -3.734100 0.019826 -2.503600 
0.250 -2.522919 -3.748400 0.046005 -2.476900 
0.255 -2.521954 -3.764500 0.066256 -2.455600 
0.260 -2.520234 -3.775500 0.093398 -2.426800 
0.265 -2.518434 -3.789200 0.098238 -2.420100 
0.270 -2.516076 -3.804200 0.105287 -2.410700 
0.275 -2..514675 -3.820300 0.114704 -2.399900 
0.280 -2.512264 -3.834500 0.136814 -2.375400 
0.285 -2.509725 -3.845700 --- --- 
0.290 -2.505960 -3.858300 --- --- 
0.295 -2.502339 -3.868400 --- --- 
0.300 -2.497939 -3.885200 --- --- 



212 J. P. VALLEAU 

somewhat noisy due to the numerical differentiation. The derivative in (4.4) was 
estimated by four-point numerical differentiation using a grid of 0.010 in pa3. 

Figure 7 shows the excess osmotic coefficients obtained in this way. For com- 
parison are shown some values obtained from the pair correlation functions at con- 
tact estimated by extrapolation of canonical Monte Carlo results [ 181. Figure 8 
shows the activity coefficient (4.5) along with several values derived previously 
[19] from grand canonical Monte Carlo calculations. The agreement is very 
satisfactory. 

The configurational internal energy is evaluated during the DSMC runs. Figure 9 
shows the results, along with the results of canonical [lS] and grand canonical 
[ 191 Monte Carlo experiments. 

Similar comparisons are possible for the 2:2 case. In this case the absolute value 
of the excess free energy at a single concentration can be fixed using the values 
derived by Graham and Valleau [S], based on a lit to the grand canonical chemical 
potential data. Then the DSMC results yield the excess free energy at each concen- 
tration; it is these values that appear in Table IV and Fig. 10. The figure shows the 
DSMC results and also several values given by the tit mentioned above [S]. 

It is of interest that the DSMC runs behave smoothly up to at least 3.3M, 
because conventional grand-canonical simulations appeared to become erratic at 
lower concentrations [ 191. It seems likely that some “quasi-ergodicity” trap is 
being avoided by the use of our non-physical sampling distribution. 

The osmotic coefficient is shown in Fig. 11. The canonical results [20] shown 

FIG. 11. Excess osmotic coefficient for the 2:2 RPM. The canonical results (circles with If: 2 standard 
deviations) are unreliable due to the impossibility of reliable extrapolation of the pair functions. The 
DSMC results are, of course, somewhat noisy due to the numerical differentiation. 
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FIG. 12. Logarithm of the mean ionic activity coefficient obtained by DSMC (crosses). The squares 
show grand canonical results ( k2 standard deviations). 

FIG. 13. Reduced configurational energy for 2:2 RPM obtained by DSMC (crosses). The circles are 
canonical results and the squares grand canonical ( +2 standard deviations). 
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there agree rather poorly. This is not surprising, since they could only be obtained 
by extrapolation to contact of the pair correlation functions. The pair functions rise 
so dramatically near contact for these systems that reliable extrapolation is out of 
the question. (For that reason these canonical results were never published.) 
Figure 12 shows the activity coefficients, along with grand canonical results [ 191 
for systems with a similar number of particles. The agreement is moderate; except 
at the lower concentrations we are, however, into the region where grand canonical 
results appeared somewhat erratic, as mentioned above. 

The DSMC configurational energy results are shown in Fig. 13 and are, again, 
compared with canonical [20] and grand canonical [ 193 results. 

Figure 14 shows by way of example pair correlation functions obtained in a 
single DSMC run. It is rather satisfying to see the changes of shape and the con- 
traction of the pair functions as the density is increased, revealed from within a 
single Monte Carlo run. The results are entirely consistent with previous canonical 
Monte Carlo results [20, 211. 

FIG. 14. Pair correlation functions for like and unlike ion pairs at several densities obtained in a 
single DSMC run. The functions at successive densities are displaced upwards by 1.0. 
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5. CONCLUSION 

This paper demonstrates the feasibility of using umbrella sampling to obtain 
thermodynamic and structural information over a substantial range of density in a 
single Monte Carlo run. One obtains not only canonical averages of mechanical 
quantities, but also relative free energies. One can extract data for as many densities 
as one wishes, in the range covered. Thus one gets large quantities of data; this is 
especially useful in that they can then readily be manipulated to take advantage of 
thermodynamic relations; a good example is the numerical differentiation used in 
the present cases to derive pressures and activity coefficients. 

The method is inherently efficient, in that each contiguration sampled contributes 
to the averages at several different densities. The results reported in the paper are 
by far more extensive than previously obtained for these systems, but for the 1:l 
coulombic system (0.54M-3.3M) and the 2:2 (0.22M-3.4M) these results were 
obtained in three DSMC runs. The hard-sphere system (126 states in the range 
(0.4 < pa3 ~0.9) was done in five DSMC runs, though fewer could conveniently 
have been used. 

Fortunately, it proves to be quite straightforward to find an appropriate 
umbrella sampling distribution rr(r”‘) by adjusting a couple of parameters in a 
suitable chosen function. 

On an Apollo DNlOOOO computer the 2:2 RPM runs required about 25 min per 
lo6 configurations, when pair function data was not collected. Pair function data 
increased that time to over an hour, however, simply because a lot of sums must 
be stored. Evidently it is thrifty to avoid this unless structural data is actually 
wanted; taking advantage of the methods demonstrated above, we can get all the 
thermodynamic data without calculating the pair functions (unlike the case of 
conventional canonical simulations). 

Both of the models studied had hard cores, but there is no reason to expect any 
difficulty with soft repulsions. (There will no longer be a sharp cutoff of w(T,,) at 
a value of r,, fixed by the minimum density, of course.) A test of the Lennard-Jones 
system is underway. The extension to non-central forces and to more complicated 
molecules requires investigation. 

As discussed in Section 1, an immediate attraction of the technique is the 
possibility of studying phase transitions. The special feature of interest is that one 
hopes that by using this quite non-physical sampling one can avoid the quasi- 
ergodicity normally associated with simulations near phase transitions. This 
immunity has been evidenced in several TSMC investigations previously 
[ 1, 2,4, 51, but DSMC should offer a more direct and effective way of exploring the 
phase transition region. One hopes in this way to explore at a single temperature 
the density range encompassing phase separations. Some applications along those 
lines are well underway and will be reported elsewhere. 
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